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Abstract

This paper studies the multimodal vibration damping of an elastic beam equipped with multiple
piezoelectric actuators connected to an electric network. Two analytical models of the electromechanical
coupled structure are considered: a homogenized one, accurate when a large number of actuators is
employed, is used to derive simple design criteria for the electric network; and a discrete one, able to face
real situations when few actuators are employed, is adopted to test the network performance, defined as the
exponential time-decay rate of the free vibrations of the controlled structure. Some electric networks are
presented and compared in simulation to networks previously proposed in the literature, in order to
evaluate their performances in broadband vibration control.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Piezoelectric sensors and actuators are widely used for vibration control, e.g., in aeronautic
structures and precision manipulators, due to their lightness and easy integrability to the host
structure [1].
Piezoelectric devices can be employed in active and hybrid vibration control schemes [2,3],

requiring to design proper compensators and signal amplifiers to drive the actuators. Passive
see front matter r 2005 Elsevier Ltd. All rights reserved.
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vibration control is a simpler and cheaper technique, which is inherently stable and robust. It is
implemented by shunting the piezoelectric devices on suitable electric circuits able to dissipate
electric energy into heat through resistive components [4].
The most popular example of passive control scheme employs a single piezoelectric actuator

and a resistive–inductive shunt (e.g., [4,5]). It is effective on one single structural eigenmode, since
the shunt inductance can compensate the capacitive impedance of the piezoelectric actuator at the
tuning frequency only.
Multimodal passive vibration damping is a more difficult task. Some significant results in this

direction can be found in the literature. In Refs. [6,7] a single piezoelectric actuator is shunted to
an electric network composed by parallel resistive–inductive–capacitive branches, each one tuned
on a structural eigenmode. A similar approach is adopted in [8], where the capacitors of the
parallel branches are replaced by current blockings, each one composed by the parallel of a
capacitor and an inductor.
A multimodal damping system can be obtained also by means of a circuit containing a negative

capacitance [9], used to compensate the inherent capacitive impedance of the piezoelectric
actuator over a large frequency band [10–12]. However, this control system is not a passive one,
since the implementation of a negative capacitance requires the use of active components.
A different strategy for multimodal damping [13–15] has been receiving much attention by

researchers, and seems to be very promising also in applications to some related fields such as
vibration delocalization in periodic structures [16] and localization of wave propagation in rods
[17]. This strategy is based on the use of several piezoelectric actuators, bonded on a vibrating
structure and connected to each other and/or to the ground through an electric network. The
interlink between multiple piezoelectric actuators, periodically placed on the controlled structure,
can provide control actions able to attenuate structural vibrations on a large frequency band. The
performance of this control system crucially depends on the choice of the electric components
contained in the network and on their clever disposition. In Ref. [13] a rotationally periodic
structure has been considered, composed by several identical substructures, each equipped with a
piezoelectric actuator connected to a resistive–inductive shunt in series to an active controller.
Exploiting the periodicity of the structure, uncoupled differential equations relevant to each
spatial harmonic are obtained, and an effective damping of all the spatial harmonics is achieved
by properly choosing the active control law. The passive control schemes proposed in Refs. [14,15]
act on a beam equipped with equally-spaced piezoelectric actuators connected to periodic electric
networks containing resistive–inductive components. A continuous homogenized model of the
electromechanical vibrating structure is employed. Uncoupled equations for each eigenmode are
obtained and used for the optimization of the electric components. The optimal values turn out to
depend on the eigenmode, so that those schemes are effective on a limited frequency band.
Moreover, the homogenization approach is accurate when a large number of actuators is adopted:
hence, it would be useful to test networks designed on the basis of a continuous model against the
real discrete distribution of the actuators, often limited to few units for technological reasons.
This paper deals with vibration control of beams equipped with multiple piezoelectric

actuators. It is aimed to develop control schemes which are effective on several eigenmodes and
employ simple electric networks. The performance of each network is evaluated on the basis of the
impulsive response of the controlled structure. More precisely, the performance index is defined as
the exponential time-decay rate (ETDR) of the free vibrations, which is the maximum of the real
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part of the system poles. Accordingly, the optimization process of each network relies on the pole
placement technique, previously employed in the case of a single actuator [4,5].
As design tools, different models of the controlled structure are presented. A semi-continuous

model, based on a continuous Euler–Bernoulli model for the beam and taking into account the
actual discrete disposition of the actuators, is first presented. Two simplified models, more easily
handled in applications, are then derived. A fully continuous model is obtained by using
homogenization techniques; it yields simple design criteria for the electric networks. Furthermore,
a fully discrete model is derived by means of standard approximation techniques; it is suitable to
describe the real discrete distribution of the actuators and is used to evaluate the performance of
each considered electric network.
As a case study, a simply-supported beam equipped with multiple equally-spaced piezoelectric

actuators is considered. This analysis allows closed-form computations, and inspires the design of
electric networks for different boundary conditions [18].
Several electric networks previously presented in the literature are analyzed and new ones are

here proposed and evaluated.
The paper is organized as follows. The semi-continuous model of the electromechanical

vibrating beam is presented in Section 2. The fully discrete model is derived in Section 3. A gallery
of networks is presented in Section 4, classified into periodic (Section 4.1) and nonperiodic
(Section 4.2). In the case of periodic networks, an homogenization limit is computed, leading
to the fully continuous model presented in Section 5. The optimization criterium is discussed
in Section 6. In Section 7 the case-study problem of a simply-supported beam equipped with
equally-spaced actuators is considered. A closed form solution for this problem is derived
according to both the continuous homogenized model (Section 7.1) and to the fully discrete model
(Section 7.2). The solution in the case of the discrete model involves some lengthy calculations,
reported in Appendix A. The performance evaluation of the proposed electric networks is
presented in Section 8. In particular, a case-study structure is presented in Section 8.1,
dimensionless parameters are introduced in Section 8.2, the periodic networks are analyzed in
Section 8.3, and the nonperiodic networks in Section 8.4. In the case of periodic networks, the
optimization is performed first according to the continuous homogenized model (Sections 8.3.2
and 8.3.3) and then by using the more accurate discrete model (Section 8.3.4), in order to highlight
the difference in accuracy between the two models.
2. Semi-continuous model

In this section a dynamical model describing the behavior of a beam equipped with several
piezoelectric actuators connected by an electric network is presented. This model is semi-
continuous, since it arranges a continuous model for the beam and a discrete model for the
actuators and the electric network.
The beam has length l and has a rectangular cross section, with thickness h, width b and flexural

moment of inertia J ¼ bh3=12. It is comprised by a linearly elastic isotropic material with Young
modulus E and Poisson ratio n. The mass density per unit length is denoted by r. A Cartesian
frame ðO;x; y; zÞ is introduced, with z 2 ð0; lÞ spanning the beam length. According to this
notation, ðy; zÞ is the flexure plane of the beam.



ARTICLE IN PRESS

h

l

li
ti

zi
-

zi
+

z

y

O

Fig. 1. Piezoactuated beam.
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The beam is actuated by Np piezoelectric devices bonded on its surface (Fig. 1). The ith actuator
is supported on the interval ðz�i ; z

þ
i Þ, whose characteristic function is wiðzÞ; the actuator length is

li ¼ zþi � z�i ; its width is bi and its thickness is ti, which is small compared to the in-plane
dimensions li, bi and to the beam thickness h. The actuators are comprised by a transversely
isotropic, linearly piezoelectric material with transverse-isotropy axis oriented in the thickness
direction. According to the Voigt notation, the relevant constitutive relationship is described by
the five closed-circuit elastic constants c11, c12, c13, c33 and c44, the two clamped permittivity
constants e11 and e33, and the three piezoelectric constants e31, e33 and e15 [19].
The displacement field in the beam is represented according to the Euler–Bernoulli model, and

the beam deflection at the time t is denoted by vðz; tÞ. For the sake of simplicity, the actuators are
assumed to contribute negligibly to the bending stiffness of the structure. The opposite surfaces of
each actuator are covered by electrodes. The electrode bonded to the beam is grounded; the
opposite one has an electric potential denoted by ji and stores an electric charge denoted by qi.
The voltages ji and the charges qi are arranged in vectors u and q, respectively, with Np

components.
The equilibrium equation of the beam and the charge balance equation of the piezoelectric

actuators, written in the Laplace domain, are [20–22]:

EJv0000 ¼ �rðs2v� _v0 � sv0Þ þ k � u, ð1Þ

Cpuþ
Z l

0

kvdz ¼ q. ð2Þ

Here differentiation with respect to z is denoted by a prime; scalar product is denoted by a dot; s is
the Laplace variable and, with a slight abuse of notation, the Laplace transform of a function f is
denoted again by f; v0ðzÞ and _v0ðzÞ are the initial displacement and velocity, respectively, and
s2v� _v0 � sv0 is the Laplace transform of the second time derivative of the beam deflection; the
matrix Cp is diagonal, and its ith entry C

p
ii ¼ e33bili=ti is the clamped electric capacity of the ith

piezoelectric actuator; the vector k, whose entries are

ki ¼ �
h

2
e31biw00i ¼

h

2
e31bi½d

0
ðz� zþi Þ � d0ðz� z�i Þ� (3)

takes into account the piezoelectric coupling. Here d is the Dirac function, and the derivatives
are intended in the sense of distributions. In particular, kiji represents a pair of opposite couples
of magnitude �ðh=2Þe31biji located at z�i , generated by the converse piezoelectric effect; on the
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other hand, Z l

0

kivdz ¼
h

2
e31bi½�v0ðzþi Þ � ð�v0ðz�i ÞÞ� (4)

is the charge driven on the ith actuator by the beam deflection, due to the direct piezoelectric
effect. The material constants e33 and e31 entering the piezoelectric capacitances and coupling
coefficients, respectively, are given by [20]

e33 ¼ e33 þ e233=c33; e31 ¼ e31 � c13e33=c33. (5)

In particular, the former is the reduced clamped permittivity in the transversal direction and the
latter is the reduced piezoelectric coupling coefficient. They yield the charge density, respectively,
induced by a transversal electric field or by an in-plane strain on a device under vanishing
transversal normal stress.
The dynamical model of the coupled electromechanical system is completed by the following

relationship between u and q:

sqþ AðsÞu ¼ 0, (6)

which depends upon the external electric network connecting the actuators to each other and to
the ground. For the sake of simplicity, vanishing initial electric conditions are enforced. Hence, sq
is the Laplace transform of the time derivative of the charge on the actuators. On the other hand,
the electric admittance symmetric matrix AðsÞ, whose dependence on s is here emphasized,
contains on the main diagonal at position ði; iÞ, the sum of all the electric admittances reaching the
ith actuator, and off diagonal at position ði; jÞ, iaj, the opposite of the electric admittance
between the ith and jth actuator. As a consequence, AðsÞu is the current from the actuators to the
network or to the ground. Hence, Eq. (6) expresses a current balance; in Section 4 it will be
specialized to several different electric networks.
The electric charge q can be substituted from Eq. (6) into Eq. (2), leading toZ l

0

kvdzþ Cp
þ

1

s
AðsÞ

� �
u ¼ 0. (7)

Eqs. (1) and (7) constitute the semi-continuous model of the piezoactuated beam, which can be
recast in the following variational formulation:

stat
v;u

Z l

0

EJ

2
ðv00Þ2 þ

rs2

2
v2 � rð_v0 þ sv0Þv� k � u v

� �
dz�

1

2
u � Cp

þ
1

s
AðsÞ

� �
u

� �
. (8)

This formulation straightforwardly yields the compatible boundary conditions and can take into
account nonhomogeneous variational boundary data by adding suitable linear terms to the
involved functional [23]. It constitutes the basis of the discrete model presented in Section 3.
3. Discrete model: modal analysis

A completely discrete model of the piezoactuated beam can be obtained by discretizing the
function v involved in the variational formulation (8) of the semi-continuous model. To this end,



ARTICLE IN PRESS

P. Bisegna et al. / Journal of Sound and Vibration 289 (2006) 908–937 913
the function v is approximated as follows:

vðz; sÞ ¼
Xn

j¼1

vjðsÞf jðzÞ, (9)

where f jðzÞ are fixed shape functions satisfying the essential boundary conditions, vjðsÞ are the
mechanical unknowns (e.g., nodal values or Ritz–Raleigh coefficients), arranged into a vector v
and n is the number of mechanical degrees of freedom of the discretized model (e.g., [21]). This
leads to the equations:

M s2v� _v0 � sv0
� �

þ Kmmvþ Kmeu ¼ 0, ð10Þ

KT
mev� Cp

þ
1

s
AðsÞ

� �
u ¼ 0. ð11Þ

HereM is the mass matrix, Kmm is the stiffness matrix, Kme is the piezoelectric coupling matrix and
a superscript T denotes transposition; it is here remarked that all these matrices are real. In the
Laplace domain, Eq. (10) expresses the discrete mechanical equilibrium between the inertial term
�Mðs2v� _v0 � sv0Þ, the elastic term �Kmmv and the piezoelectric term �Kmeu due to the
actuators. In the Laplace domain, Eq. (11) stipulates that the electric charge stored by the
actuators, which is composed by the capacitive term Cpu and piezoelectric term �KT

mev, is just
the charge �ð1=sÞAðsÞu flowed from the network or the ground to the actuators.
In order to obtain a simpler form of Eq. (10), a modal analysis is performed. Consequently, the

change of variable v ¼ Vy is enforced, where the matrix V is determined by imposing that VTMV

is the identity matrix and VTKmmV ¼ X2 is a positive-definite diagonal matrix. Accordingly,
Eqs. (10) and (11) are transformed into:

s2y� _y0 � sy0 þX2yþ Ku ¼ 0, ð12Þ

KTy� Cp
þ

1

s
AðsÞ

� �
u ¼ 0. ð13Þ

The diagonal components of X are the modal circular frequencies at shorted actuators (i.e., when
u ¼ 0), and the columns of K ¼ VTKme contain the modal piezoelectric coupling coefficients
relevant to each actuator. The columns of V are the modal structural eigenvectors at shorted
actuators, and y is the vector of the modal coordinates. Moreover, y0 ¼ V�1v0 and _y0 ¼ V�1 _v0.
A modal reduction could be performed by retaining only the most significant components of y

and the corresponding equilibrium equations in Eq. (12).
It is emphasized that the modal mechanical unknowns y are coupled to each other by the

electric unknowns u, since the matrices K and AðsÞ are not, in general, diagonal. However, they
can be transformed into diagonal in special cases, as it will be shown in Section 7.2.
4. Electric networks

In this section some electric networks are analyzed. Networks composed by a periodic
arrangement of admittances are considered in Section 4.1. They allow an homogenization process,
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which will be performed in Section 5. Networks which do not share any periodicity property are
considered in Section 4.2.

4.1. Periodic electric networks

This kind of electric networks is composed by a periodic arrangement of admittances.
In Fig. 2 the admittance A0ðsÞ connects each actuator to the ground. The current balance

relevant to the typical actuator i is

sqi þ A0ðsÞji ¼ 0. (14)

In Fig. 3 the admittance A2ðsÞ connects each actuator to the adjacent ones. The current balance
relevant to the typical actuator i is

sqi þ A2ðsÞð�jiþ1 þ 2ji � ji�1Þ ¼ 0. (15)

In Fig. 4 the admittance 4A4ðsÞ connects the typical actuator i to the actuators i � 1 and i þ 1, and
the admittance�A4ðsÞ connects the actuator i to the actuators i � 2 and i þ 2. The current balance
A0 A0A0 A0 A0 A0

Fig. 2. Zeroth-order periodic electric network PN0.

4A4

-A4 -A4

-A4
-A4

4A4 4A4 4A4

Fig. 4. Fourth-order periodic electric network PN4.

A2 A2 A2 A2

Fig. 3. Second-order periodic electric network PN2.
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relevant to the typical ith piezoelectric actuator reads as follows [15]:

sqi þ A4ðsÞðjiþ2 � 4jiþ1 þ 6ji � 4ji�1 þ ji�2Þ ¼ 0. (16)

It is pointed out that the network in Fig. 4 involves both the admittances 4A4ðsÞ and �A4ðsÞ, so
that it is not a truly passive network.
Here A0ðsÞ, A2ðsÞ and A4ðsÞ are, respectively, referred to as zeroth-, second- and fourth-order

line admittance. In fact, in Section 5 it will be proved that, in the homogenization limit, under
suitable scaling conditions, Eqs. (14), (15) and (16), respectively, originate terms involving the
potential j, its second-order spatial derivative j00, and its fourth-order spatial derivative j0000.
Accordingly, the electric networks in Figs. 2, 3 and 4 are, respectively, referred to as zeroth-,
second- and fourth-order periodic network and are denoted by the acronyms PN0, PN2, PN4.
Of course, higher-order electric networks could in principle be considered, but the previous ones
suffice for the purpose of vibration damping.
The periodic networks considered in the following are built up as the parallel of PN0, PN2 and

PN4. Accordingly, the current balance relevant to the typical ith piezoelectric actuator reads in
the general case as follows:

sqi þ A0ðsÞji þ A2ðsÞð�jiþ1 þ 2ji � ji�1Þ þ A4ðsÞðjiþ2 � 4jiþ1 þ 6ji � 4ji�1 þ ji�2Þ ¼ 0. (17)

4.2. Nonperiodic electric networks

The electric network sketched in Fig. 5 is obtained by shunting the typical actuator i on a
suitable admittance AiðsÞ, which, in general, is different for different actuators. On the basis of the
analogy to the network PN0, it will be denoted by the acronym NPN0 (nonperiodic zeroth-order
network). The current balance relevant to the actuator i is

sqi þ AiðsÞji ¼ 0. (18)

The electric network sketched in Fig. 6 is obtained by connecting the typical actuator i with the
adjacent actuators i � 1 and i þ 1 by means of admittances Ai�1;iðsÞ and Ai;iþ1ðsÞ, respectively.
A 2A k,k+1A 2Ai-2,i-1 Ai,i+1 Ai+1,i+2Ai-l,i

Fig. 6. Second-order nonperiodic electric network NPN2.

Ai-2 Ai-1 Ai Ai+1 Ai+2

Fig. 5. Zeroth-order nonperiodic electric network NPN0.
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On the basis of the analogy with the network PN2, it will be denoted by the acronym NPN2
(nonperiodic second-order network). The current balance relevant to the actuator i is

sqi þ Ai�1;iðsÞðji � ji�1Þ þ Ai;iþ1ðsÞðji � jiþ1Þ ¼ 0. (19)
5. Continuous model: homogenization of periodic electric networks

The electric networks introduced in Section 4.1 are periodic in space. If the spatial period e is
small compared to the beam length l, one may be tempted to replace the discrete real distribution
of the actuators by an equivalent continuous one, i.e., to perform an homogenization limit [24].
It is assumed that the actuators have the same length li ¼ Ze, the same width bi ¼ b and the

same thickness ti ¼ t. Here Z is the piezoelectric covering factor, i.e., the fraction of the spatial
period (and hence, the fraction of the beam length) covered by the actuators. Let De ¼SNp

i¼1ðz
�
i ; z
þ
i Þ be the domain occupied by the actuators.

When the number of actuators Np becomes very large, the function
PNp

i¼1wi weakly converges to
Z as e! 0. Moreover, it is assumed that:
�
 the mechanical displacement v strongly converges, together with its derivatives, to a limiting
function which is again denoted by v; P

�
 the piecewise constant electric potential

Np

i¼1wiji, regarded as a function defined over De, can
be extended over ð0; lÞ uniformly with respect to e to a smooth function ~je, which strongly
converges, together with its derivatives, to a limiting function j;P

�
 the piecewise constant charge density

Np

i¼1wiqi=li, regarded as a function defined over De, can
be extended over ð0; lÞ uniformly with respect to e to a smooth function ~se, which strongly
converges to a limiting charge density s.

Then, in particular,

XNp

i¼1

wiji ¼
XNp

i¼1

wi ~je! Zj;
XNp

i¼1

wiqi

li

¼
XNp

i¼1

wi ~se! Zs. (20)

A rigorous functional framework can be derived by using techniques similar to Ref. [24].
A weak version of Eq. (1) is now derived, in order to obtain its homogenization limit. To this

end, Eq. (1) is multiplied by a smooth test function c compactly supported on ð0; lÞ, and
integrated over ð0; lÞ, yieldingZ l

0

EJv00c00 dz ¼

Z l

0

�rðs2v� _v0 � sv0Þcdz�
XNp

i¼1

h

2
e31bji½c

0
ðzþi Þ � c0ðz�i Þ�. (21)

This equation is transformed intoZ l

0

EJv00c00 dz ¼

Z l

0

�rðs2v� _v0 � sv0Þcdz�

Z l

0

h

2
e31bc

00
XNp

i¼1

jiwi dz, (22)
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which yields in the limit:Z l

0

EJv00c00 dz ¼

Z l

0

�rðs2v� _v0 � sv0Þcdz�

Z l

0

Kc00jdz, (23)

whose strong version is

EJv0000 ¼ �rðs2v� _v0 � sv0Þ � Kj00. (24)

On the other hand, Eq. (2), after multiplying by wi=li and summing over i, gives

XNp

i¼1

e33b
t

wiji �
XNp

i¼1

h

2
e31bwi

v0ðzþi Þ � v0ðz�i Þ

li

¼
XNp

i¼1

wiqi

li

, (25)

which yields in the limit:

Gj� Kv00 ¼ Zs. (26)

Here

K ¼
Zhe31b

2
; G ¼

Ze33b
t

. (27)

It can be easily recognized that G is the capacity per unit length of the homogenized distribution of
the actuators. Analogously, K is the homogenized structural piezoelectric coupling coefficient, i.e.,
the charge density induced by a unit curvature of the beam. It is emphasized that s is the charge
density on the actuators, whereas Zs is the charge density per unit length of the homogenized
beam: the former is greater than the latter when the actuators do not entirely cover the beam
length.
It remains to take the limit of Eq. (6). In order to analyze a specific class of periodic networks,

Eq. (17) is considered instead. It is multiplied by wi=li and summed over i. Moreover, it is assumed
that the line admittances A0ðsÞ, A2ðsÞ, and A4ðsÞ rescale as follows:

A0ðsÞ ¼ eÂ0ðsÞ; A2ðsÞ ¼ e�1Â2ðsÞ; A4ðsÞ ¼ e�3Â4ðsÞ, (28)

where Â0ðsÞ, Â2ðsÞ and Â4ðsÞ do not depend on e. In particular, Â0ðsÞ is the admittance toward the
ground per unit length; analogously, Â

�1

2 ðsÞ is the line impedance per unit length. As a
consequence of these scalings, Eq. (17), after multiplying by wi=li and summing over i, gives

s
XNp

i¼1

wiqi

li

þ
Â0ðsÞ

Z

XNp

i¼1

jiwi �
Â2ðsÞ

Z

XNp

i¼1

jiþ1 � 2ji þ ji�1

e2
wi

þ
Â4ðsÞ

Z

XNp

i¼1

jiþ2 � 4jiþ1 þ 6ji � 4ji�1 þ ji�2

e4
wi ¼ 0 ð29Þ

and yields in the limit:

sZsþ Â0ðsÞj� Â2ðsÞj00 þ Â4ðsÞj0000 ¼ 0. (30)

The charge density s can be substituted from Eq. (30) into Eq. (26), yielding

1

s
½Â0ðsÞj� Â2ðsÞj00 þ Â4ðsÞj0000� þ Gj� Kv00 ¼ 0. (31)
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Eqs. (24) and (31) constitute the continuous homogenized model of the piezoactuated beam. They
can be recast in the following variational formulation:

stat
v;j

Z l

0

1

2
EJðv00Þ2 þ Kjv00 þ

rs2

2
v2 � rð_v0 þ sv0Þv

�

�
G
2
j2 �

1

2s
½Â0ðsÞj2 þ Â2ðsÞðj0Þ

2
þ Â4ðsÞðj00Þ

2
�

�
dz. ð32Þ

This formulation immediately yields the compatible boundary conditions requested in order to
complete the problem, to be imposed at the boundaries z ¼ 0 and l:

v assigned or EJv000 þ Kj0 ¼ 0, ð33Þ

v0 assigned or EJv00 þ Kj ¼ 0, ð34Þ

j assigned or
1

s
ð�Â2ðsÞj0 þ Â4ðsÞj000Þ ¼ 0, ð35Þ

j0 assigned or
Â4ðsÞ

s
j00 ¼ 0. ð36Þ

Of course, nonhomogeneous variational boundary data can be taken into account by adding
suitable linear terms to functional (32) [23].
6. Optimization criterium

The continuous model (24), (31), to be completed by the boundary conditions (33)–(36), as well
as the discrete model (12) and (13), involve admittances to be chosen in order to achieve an
efficient vibration damping.
Designing the network admittances is an optimization problem which requires the choice of an

objective function to be minimized. This choice reflects one’s prejudices about vibration damping.
Some authors introduce a sinusoidal forcing term in the model equations and choose an integral
norm of the corresponding frequency response function as the objective function. That approach
is suitable to study the forced response of the system.
In this paper the impulsive response of the controlled structure is considered. The objective

function to be minimized is the ETDR of the free vibrations, which is defined as the maximum of
the real part of the poles of the controlled system. Of course, the ETDR must be negative for the
system to be stable. From a physical point of view, minimizing the ETDR amounts to making as
fast as possible the time decay of the most-slowly exponentially-decaying term of the response.
7. Simply-supported beam with periodic electric networks

In this section, the case of the simply-supported beam, equipped with periodically spaced
piezoelectric actuators connected to a periodic electric network, is thoroughly studied, by using
both the continuous model and the discrete model. After a suitable choice of the electric boundary
conditions, and by exploiting the periodicity property of the system, uncoupled dynamical
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equations relevant to each structural eigenmode are obtained. Then, a closed-form analytical
optimization of the electric components is performed such as to achieve a multimodal damping.
The analysis of this case yields design criteria which turn out to be useful also for different
boundary conditions [18] and different structural topologies, such as rotationally periodic
structures [13].

7.1. Continuous model

The mechanical boundary conditions are given by Eqs. (33)1 and (34)2. It is convenient to
choose as electric boundary conditions (35)1 and (36)2. Accordingly, it is easy to verify that the
solution of Eqs. (24) and (31) can be written as follows:

vðz; sÞ ¼
Xþ1
j¼1

ffiffiffiffiffi
2

rl

s
vjðsÞ sinðajzÞ; jðz; sÞ ¼

Xþ1
j¼1

ffiffiffi
2

l

r
jjðsÞ sinðajzÞ, (37)

where aj ¼ pj=l and the coefficients vjðsÞ and jjðsÞ satisfy the equation:

EJ

r
a4j þ s2 �

Ka2jffiffiffi
r
p

�
Ka2jffiffiffi
r
p �G�

1

s
½Â0ðsÞ þ a2j Â2ðsÞ þ a4j Â4ðsÞ�

2
66664

3
77775

vj

jj

" #
¼

_v0j þ sv0j

0

� �
, (38)

where the initial displacement and velocity have been expanded according to Eq. (37)1, with
coefficients v0j and _v0j, respectively. It is pointed out that the modal components ðvj;jjÞ in
Eq. (37), corresponding to a mode j 2 N, are uncoupled from the modal components ðvj0 ;jj0 Þ,
corresponding to another mode j0 2 N. The poles corresponding to the mode j are given by the
values of s which make the determinant at the left-hand side of Eq. (38) vanish:

EJ

r
a4j þ s2

� 	
Gþ

1

s
½Â0ðsÞ þ a2j Â2ðsÞ þ a4j Â4ðsÞ�

� �
þ

K2a4j
r
¼ 0. (39)

All the poles of the system are obtained by collecting the roots of Eq. (39) over j 2 N.
As it was explained in Section 6, the optimization amounts to choosing the admittances Â0ðsÞ,

Â2ðsÞ and Â4ðsÞ in order to minimize the maximum of the real part of the poles of the system. This
is a difficult task, mainly due to the fact that the poles corresponding to all the modes must be
considered at the same time. Indeed, one cannot perform the optimization by looking at one mode

at a time, since the admittances, say Â
ðjÞ

0 , Â
ðjÞ

2 and Â
ðjÞ

4 , which optimize the poles corresponding to a

generic mode j 2 N are in general different from the admittances, say Â
ðj0Þ

0 , Â
ðj0Þ

2 and Â
ðj0Þ

4 , which

optimize the poles corresponding to another mode j0 2 N, due to the fact that j explicitly enters
Eq. (39), through aj. Thus, optimizing one mode at a time is inconclusive, since it would be

unclear which set of admittances Â
ðjÞ

0 , Â
ðjÞ

2 and Â
ðjÞ

4 should be chosen.

However, a simple approach is proposed here, in order to overcome the difficulty of con-
sidering all the modes simultaneously. First, it is observed that when the piezoelectric
actuators are shunted to the ground, i.e., when Â0 tends to infinity, the poles of the system are
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given by

EJ

r
a4j þ s2 ¼ 0; i:e:; they are : �Ia2j

ffiffiffiffiffiffi
EJ

r

s( )
j2N

, (40)

where I ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit. Analogously, when the piezoelectric actuators are not
connected to each other or to the ground, i.e., when Â0 ¼ Â2 ¼ Â4 ¼ 0, the poles of the system are
given by

EJ

r
a4j þ s2

� 	
Gþ

K2a4j
r
¼ 0; i:e:; they are : �Ia2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJ

r
þ

K2

rG

s8<
:

9=
;

j2N

. (41)

The poles in Eq. (40) (respectively, Eq. (41)) are purely imaginary, and correspond to the natural
circular frequencies of the structure at shorted (respectively, open) actuators. These poles are
proportional to a2j . This issue suggests to set

Sj ¼
s

a2j
. (42)

After this position, Eq. (39) is transformed into

EJ

r
þ S2

j

� 	
Gþ

1

Sj

Â0ða2j SjÞ

a2j
þ Â2ða2j SjÞ þ a2j Â4ða2j SjÞ

 !" #
þ

K2

r
¼ 0. (43)

It is emphasized that Eq. (43) turns out to be independent of aj, provided that

Â0 is a capacitive admittance; i:e:; Â0ðsÞ ¼ sĈ,

Â2 is a Ohmic admittance; i:e:; Â2ðsÞ ¼ 1=R̂,

Â4 is an inductive admittance; i:e:; Â4ðsÞ ¼ 1=ðsL̂Þ, ð44Þ

where Ĉ, R̂ and L̂ are parameters to be optimally chosen. Indeed, when this is the case, Eq. (43) is
transformed into

EJ

r
þ S2

j

� 	
Gþ

1

Sj

SjĈ þ
1

R̂
þ

1

SjL̂

 !" #
þ

K2

r
¼ 0, (45)

whose coefficients and solutions are independent of j. As a consequence, optimizing the poles of
Eq. (45) amounts to optimizing the poles corresponding to all the eigenmodes simultaneously,
since this optimization supplies optimal values of the parameters Ĉ, R̂ and L̂ which do not depend
on j. The corresponding line admittances A0ðsÞ, A2ðsÞ and A4ðsÞ follow from Eq. (28), and turn out
to be:

A0ðsÞ ¼ sC with C ¼ eĈ,

A2ðsÞ ¼ 1=R with R ¼ eR̂,

A4ðsÞ ¼ 1=ðsLÞ with L ¼ e3L̂. ð46Þ
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7.2. Discrete model

The Np piezoelectric actuators, up to the first and the last ones, have all the same length Ze
and their centers constitute a periodic array of spatial period e ¼ l=ðNp � 1Þ. The first and the
last actuators have half-length, one end aligned to the support, and are shunted to the ground (see
Fig. 1). Accordingly, the remaining actuators will be numbered from 1 to p, where p ¼ Np � 2.
Their centers are at the positions ei and are supported on the intervals ðz�i ; z

þ
i Þ, where

z�i ¼ eði � Z=2Þ, i ¼ 1 . . . p.
The shape functions f j chosen here are

f jðzÞ ¼

ffiffiffiffiffi
2

rl

s
sinðajzÞ; j ¼ 1 . . . n, (47)

where n is the number of mechanical eigenmodes taken into account in the analysis. Accordingly,
it is easily seen that the n� n mass matrix M and the n� n stiffness matrix Kmm in Eq. (10) turns
out to be diagonal: in particular, the first one is the identity, while the ith diagonal entry of Kmm is
EJa4j =r. The n� p matrix Kme is full, and is given by

ðKmeÞji ¼ �hbe31aj

ffiffiffiffiffi
2

rl

s
sinðajeiÞ sin

ajeZ
2


 �
; j ¼ 1 . . . n; i ¼ 1 . . . p. (48)

The p� p matrix Cp is diagonal, with diagonal entries all equal to the actuator capacity
C

p
ii ¼ e33beZ=t. According to Eq. (17), the p� p admittance matrix AðsÞ is given by

A ¼ A0M0 þ A2M2 þ A4M4, (49)

where the p� p matrices M0, M2 and M4 are obviously derived from Eq. (17). As an example, in
the case p ¼ 5 they read as follows:

M0 ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
666666664

3
777777775
; M2 ¼

2 �1 0 0 0

�1 2 �1 0 0

0 �1 2 �1 0

0 0 �1 2 �1

0 0 0 �1 2

2
666666664

3
777777775
,

M4 ¼

5 �4 1 0 0

�4 6 �4 1 0

1 �4 6 �4 1

0 1 �4 6 �4

0 0 1 �4 5

2
666666664

3
777777775
. ð50Þ

The admittances connecting the actuators near the simply-supported ends of the beam have been
arranged in such a way as to reproduce, at the present discrete level, the boundary conditions
j ¼ 0 and �ðÂ4ðsÞ=sÞj00 ¼ 0 given by Eqs. (35) and (36) [15].
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Then, the following change of variable is performed

u ¼ Hw, (51)

where the entries of the p� p matrix H are given by

Hij ¼

ffiffiffi
2

l

r
sinðajeiÞ; i; j ¼ 1 . . . p. (52)

A similar transformation was adopted in the analysis of rotationally periodic structures
(e.g., [13]). Accordingly, the matrices Kme, M0, M2 and M4 are transformed into

~Kme ¼ KmeH; ~M0 ¼ HTH; ~M2 ¼ HTM2H; ~M4 ¼ HTM4H. (53)

After some computations reported in Appendix A, it is verified that, under the condition

pXn� 1 (54)

it turns out that

ð ~KmeÞji ¼ �
Ka2jffiffiffi
r
p f

ajZe
2


 �
dji; j ¼ 1 . . . n; i ¼ 1 . . . p, ð55Þ

ð ~M0Þij ¼ e�1 dij ; i; j ¼ 1 . . . p, ð56Þ

ð ~M2Þij ¼ e a2i gðaieÞ dij ; i; j ¼ 1 . . . p, ð57Þ

ð ~M4Þij ¼ e3 a4i hðaieÞ dij; i; j ¼ 1 . . . p, ð58Þ

where dij is the Kronecker symbol and

f ðtÞ ¼
sin t

t
; gðtÞ ¼

2� 2 cos t

t2
; hðtÞ ¼

6� 8 cos tþ 2 cos 2t

t4
. (59)

Accordingly, the governing equations (10) and (11) become uncoupled. In the case n ¼ p, they can
be written as follows:

EJ

r
a4j þ s2 �

Ka2jffiffiffi
r
p f

ajZe
2


 �

�
Ka2jffiffiffi
r
p f

ajZe
2


 �
�G�

1

s
½Â0ðsÞ þ a2j gðajeÞÂ2ðsÞ þ a4j hðajeÞÂ4ðsÞ�

2
666664

3
777775

vj

cj

" #

¼
_v0j þ sv0j

0

" #
ð60Þ

for j ¼ 1 . . . n. Hence, the mechanical unknown vj, relevant to the mode j, can be controlled due to
its coupling with the electrical unknown cj, but each mode is uncoupled from the other ones.
In the case p4n, there are p� n electrical equations which do not contain any mechanical

unknown and thus they govern the evolution of the electrical parameters cj, j ¼ nþ 1 . . . p
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independently from any mechanical term. On the other hand, in the case ppn� 1, the ðpþ 1Þth
mechanical equation does not contain any electrical unknown, and thus the mechanical unknown
vpþ1 is left uncontrolled. This is because, according to Eq. (48), it results that ðKmeÞpþ1;i ¼ 0,
i ¼ 1 . . . p. Moreover, it can be shown that if condition (54) is violated, i.e., if pon� 1, the
eigenmodes are not uncoupled, since there exist electrical unknowns cj entering more than one
mechanical equation. As a consequence, p ¼ n is the minimum value of p which allows
(i)
 to control all the n mechanical eigenmodes;

(ii)
 to obtain uncoupled modal equations.
The discrete-model equations (60) differ from the continuous-model ones (38) due to the
presence of the multiplicative terms f ðajZe=2Þ, gðajeÞ and hðajeÞ, which are, in modulus, strictly less
than one. It is interesting to observe that the homogenization limit e! 0 can be taken in Eq. (60),
supplying Eq. (38), since f ðajZe=2Þ, gðajeÞ and hðajeÞ approach one. It is understood that in this
limit the physical admittances A0ðsÞ, A2ðsÞ and A4ðsÞ comprising the periodic network are rescaled
according to Eq. (28).
8. Optimization of electric networks, simulations and discussion

This section is devoted to the analysis and comparison of the performances of different electric
networks. Both periodic and nonperiodic electric networks are considered. Though the latter ones
can be applied to any disposition of actuators, they are used here to connect a periodic array of
actuators, for the sake of comparison. It is emphasized that nonperiodic networks generally
require to tune many electric components at different tuning values; this issue is a difficult task in
practical applications, but could be accomplished by including an adaptive fine tuning on the
network components [25]. On the other hand, periodic networks have the practical advantage of
employing few periodically arranged electric components, thus sensibly reducing tuning problems
and manufacturing costs [13]. However, the number of periodically placed actuators they require
is lower bounded by the number of eigenmodes to be controlled, as shown in Section 7.2.
The optimization of the periodic networks is performed here according to both the fully

continuous model and the fully discrete one, in order to compare the results they supply.
8.1. Case-study structure

A simply supported beam with dimensions 500mm� 50mm� 1:5mm is considered. It is
composed of steel with Young modulus E ¼ 210GPa, Poisson ratio n ¼ 0:3. The linear density r
of the beam is 0:589kg=m. The beam is actuated by five piezoelectric PZT actuators, bonded on
its surface as shown in Fig. 1, whose dimensions are 66:6� 50� 0:127mm. Two halves grounded
actuators are added at the beam ends to obtain a periodic actuator arrangement. The reduced
clamped permittivity of the actuators in the transversal direction e33 is 10:50 nF=m, and their
reduced piezoelectric coupling coefficient e31 is 17:56C=m2. As a consequence, it turns out that
e=l ¼ 1

6, Z ¼ 0:8, G ¼ 3304nF=m, and K ¼ 526:3mC.
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8.2. Dimensionless parameters

In this section a dimensionless version of Eqs. (38) and (60) is derived. To this end, the
following positions are made:

v ¼ l v; u ¼
lo1ffiffiffiffi
G
p u; s ¼ o1s; K ¼ K

ffiffiffiffiffiffiffiffiffiffi
EJG
p

; v0 ¼ lo1v0; _v0 ¼ lo2
1 _v0, (61)

where the dimensionless counterparts of the involved physical parameters are overlined, and

o1 ¼
p
l


 �2 ffiffiffiffiffiffi
EJ

r

s
(62)

is the first circular eigenfrequency of the beam at shorted actuators. Of course, the system poles
are rescaled as the Laplace variable s, and hence ETDR ¼ o1ETDR.
Accordingly, Eq. (38) is transformed into

j4 þ s2 �j2K

�j2K �1�
1

o1Gs
½Â0ðo1sÞ þ a2j Â2ðo1sÞ þ a4j Â4ðo1sÞ�

2
64

3
75 vj

jj

" #
¼

_v0j þ s v0j

0

" #
ð63Þ

and Eq. (60) is transformed analogously.
By substituting Â0, Â2 and Â4 from Eqs. (44) and (46), Eq. (63) becomes

j4 þ s2 �j2K

�j2K �1� C þ j2
1

sR
þ j4

1

s2L

� 	2
64

3
75 vj

jj

" #
¼

_v0j þ s v0j

0

" #
, (64)

where the following positions are made:

C ¼ eGC; R ¼
p2e

o1l
2G

R; L ¼
p4e3

o2
1l

4G
L. (65)

The numerical values of the scales of ETDR, K, C, R and L for the structure considered in
Section 8.1 are, respectively:

o1 ¼ 88:42 rad=s;
ffiffiffiffiffiffiffiffiffiffi
EJG
p

¼ 3124mC; eG ¼ 275:3nF,

p2e

o1l
2G
¼ 11:26 kO;

p4e3

o2
1l

4G
¼ 34:92H. ð66Þ

Consequently, it turns out that K ¼ 0:1685.
8.3. Periodic networks

8.3.1. Network configurations
All the periodic networks considered here are derived from the periodic zeroth-, second- and

fourth-order lines reported in Figs. 2–4.
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The network PNR2L2, shown in Fig. 7, was proposed in Ref. [14]. It contains both inductors
and resistors on the second-order line. The network PNR0L4, shown in Fig. 8, was proposed in
Ref. [15]. It contains inductors on a fourth-order line, and resistors on a zeroth-order line. The
network PNR2L4, shown in Fig. 9 and proposed in Ref. [18], is obtained by modifying the
network PNR0L4: the resistors R from the zeroth-order line were moved to the second-order line,
in order to satisfy the optimal-tuning conditions on all the eigenmodes (44). Consequently, this
network is expected to significatively improve over the networks PNR2L2 and PNR0L4. It is noted
that the networks PNR0L4 and PNR2L4, containing a fourth-order line, employ negative
inductances which can be obtained by means of operational amplifiers. The network PNR0L4 may
L

R

L

R

L

R

L

R

Fig. 7. Periodic electric network PNR2L2.

-L-L

L/4 L/4 L/4 L/4

R RR R R

-L-L

Fig. 8. Periodic electric network PNR0L4.

R R R R

L /4 L /4 L/4 L/4

-L-L

-L-L

Fig. 9. Periodic electric network PNR2L4.
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be approximated by a network containing purely passive components [15], which, however, is
somewhat complex.
The network PNF2, shown in Fig. 10, is aimed to be effective on several eigenmodes without

employing a fourth-order line. It does not meet the conditions (44). On the other hand, it partially
follows Hollkamp’s idea [6] to use different parallel RLC branches, acting as band-pass filters,
connected to a single actuator for damping structural vibrations along different eigenmodes. An
effective multimodal damping is achieved here by using only two parallel branches on the second-
order line.
Finally, the network PNC0R2, shown in Fig. 11, is proposed, containing negative capacitors on

the zeroth-order line and resistors on the second-order line. This network meets conditions (44)
for optimal tuning on all the eigenmodes. It turns out to be extremely performant; however, it is
an active network, since it employs negative capacitors.
The admittance values A0ðsÞ, A2ðsÞ and A4ðsÞ, entering the continuous-model equation (38) and

the discrete-model equation (60) via the scaling (28), are reported in Table 1.
R2

R1 R1 R1 R1

R2 R2 R2

L2 L2 L2 L2

L1L1L1L1

C C C C

Fig. 10. Periodic electric network PNF2.

R R R R
-C -C -C -C -C

Fig. 11. Periodic electric network PNC0R2.

Table 1

Electrical admittances of periodic networks

PNR2L2 PNR0L4 PNR2L4 PNF2 PNC0R2

A0ðsÞ 0 1=R 0 0 �sC

A2ðsÞ 1=Rþ 1=ðsLÞ 0 1=R F 1=R

A4ðsÞ 0 1=ðsLÞ 1=ðsLÞ 0 0

Here F ¼ 1=R1 þ 1=ðsL1Þ þ ½1=ðsCÞ þ sL2R2=ðR2 þ sL2Þ�
�1.
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8.3.2. Single-mode optimization according to the continuous model

In this section, the damping of vibrations along a single eigenmode is considered. In particular,
an analytical optimization of the networks proposed in Section 8.3.1 is performed on the basis of
the continuous model.
The characteristic polynomials of the networks PNR2L2, PNR0L4 and PNR2L4 are fourth-

order degree whereas the network PNC0R2, which does not contain inductors, has a third-order
degree characteristic polynomial. According to the pole placement technique, the optimal
damping is achieved when the fourth-order degree polynomials exhibit two coincident couples of
complex conjugate roots, whereas the third-order degree polynomials have three coincident real
roots [4]. The analytical expressions for the optimal electric components are determined by
enforcing these conditions, and are reported, in dimensionless form, in Table 2, together with the
corresponding modal exponential time-decay rate l and circular frequency o. The network PNF2

is not considered here, since it contains several parameters leading to complicate analytical
expressions. It is remarked that the optimal parameters relevant to the networks PNR2L4 and
PNC0R2 do not depend on the mode number j. In other words, the same optimal choice of the
electric parameters optimally performs on all the eigenmodes at the same time, leading to a modal
exponential time-decay rate proportional to j2 (i.e., to the modal eigenfrequency). This is precisely
because these two networks satisfy the optimal-tuning conditions (44). This is not the case for the
networks PNR2L2 and PNR0L4, whose optimal parameters depend on j: as a consequence, only a
single eigenmode can be optimally damped once the values of R and L have been assigned.
In order to obtain a numerical comparison, the structure presented in Section 8.1 is considered.

The numerical values of the electric parameters are chosen in such a way as to optimize the
vibration damping along the first eigenmode (i.e., it is taken j ¼ 1 in Table 2) and are reported in
Table 3. The corresponding values of the modal exponential time-decay rates of the first five
Table 2

Dimensionless electric parameters and modal exponential time-decay rates of periodic networks: single-mode

optimization according to the continuous model

PNR2L2 PNR0L4 PNR2L4 PNC0R2

C / / /
1�
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1

2K

8
ffiffiffi
3
p

9

1

K
2

L 1

ðeajÞ
2

1 1 /

l
�j2

K

2
�j2

K

2
�j2

K

2

�j2
ffiffiffi
3
p

o
j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

K
2

4

s
j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

K
2

4

s
j2
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1�

K
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Table 3

Dimensionless electric parameters of periodic networks: optimization on the first eigenmode according to the

continuous model

PNR2L2 PNR0L4 PNR2L4 PNC0R2

R 2.97 10.82 2.97 54.23

L 3.65 1 1 /

C / / / 0.996

Table 4

Dimensionless modal exponential time-decay rates l according to the continuous model

Eigenmode PNR2L2 PNR0L4 PNR2L4 PNC0R2

I �0.084 �0.084 �0.084 �1.73

II �0.027 �0.077 �0.34 �6.93

III �0.046 �0.077 �0.76 �15.59

IV �0.075 �0.077 �1.35 �27.71

V �0.113 �0.077 �2.11 �43.30

ETDR �0.027 �0.077 �0.084 �1.73

Electrical parameters chosen as in Table 3.
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eigenmodes are reported in Table 4. The lowest value of l for each network is given in bold and
represents the dimensionless exponential time-decay rate (ETDR). These results confirm that the
periodic networks which do not satisfy the optimal-tuning conditions (44) exhibit an optimal
damping only on the first eigenmode, and a decay in performances on the other eigenmodes. On
the other hand, the periodic networks which do satisfy the optimal-tuning conditions exhibit the
ideal behavior of l proportional to the modal eigenfrequency.
In particular, the network PNC0R2 yields a damping definitely higher than the other networks.

This is due to the presence of the negative capacitances, able to compensate the inherent
capacitance of the piezoelectric actuators, thus reducing the overall reactive electric impedance
offered by the piezoelectric actuators. However, this damping must be intended as a theoretical
value, since the optimal values of the electric components are quite close to the instability limit
[12]: in practical applications, it would be safer to choose electric parameters sufficiently far from
that limit, at the cost of reduced performances.

8.3.3. Multimode optimization according to the continuous model
In this section, the multimodal vibration damping is considered. The electric parameters

relevant to the networks presented in Section 8.3.1 are chosen such as to optimize the exponential
time-decay rate of the free vibrations taking into account the first five structural eigenmodes. The
optimization is performed numerically, on the basis of the continuous model equations (38), by
means of the Matlabs fminsearch routine. Also the periodic network PNF2 is here considered,
in order to establish its ability in damping multimodal vibrations. The values of the optimized
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electric parameters are reported in Table 5 and the corresponding modal exponential time-decay
rates are reported in Table 6.
Comparing the entries in Table 6 with the corresponding ones in Table 4, it can be observed

that they are coincident for the networks PNR2L4 and PNC0R2 whereas are different for the
networks PNR2L2 and PNR0L4. Indeed, the former networks satisfy the optimal-tuning
conditions (44) and hence optimizing over one eigenmode is equivalent to optimize over all the
eigenmodes. On the other hand, the latter imply different optimal electric parameters for different
eigenmodes: as a consequence, the numerical optimizer has to achieve a trade-off between the
considered eigenmodes, in order to optimize the overall exponential time-decay rates and to
improve over the ones obtained in Table 4. In fact, for the network PNR2L2 the exponential time-
decay rate on the first eigenmode is worsened with respect to the single-mode optimization,
whereas the exponential time-decay rate on the second mode is improved to match the rate on the
first eigenmode. For the network PNR0L4 only a little improvement of the exponential time-decay
rate is achieved with respect to the single-mode optimization. Finally, the passive network PNF2

shows a good ability in damping a multimodal system.

8.3.4. Multimode optimization according to the discrete model
As in the previous section, the multimodal vibration damping is considered, but the numerical

optimization is here performed according to the discrete model (60). The aim is to evaluate the
performances of the electric networks in real situations, where the number of actuators is limited
to few units for technological reasons, so that a continuous model may be inaccurate.
Table 5

Dimensionless electric parameters of periodic networks: optimization on the first five eigenmodes according to the

continuous model

PNR2L2 PNR0L4 PNR2L4 PNC0R2 PNF2

R 2.12 10.83 2.97 54.23 2.75, 21.26

L 3.44 1.00 1 / 3.17, 2.63

C / / / 0.996 0.495

In the last column the first (respectively, second) entries refer to R1, L1 (respectively, R2, L2).

Table 6

Dimensionless modal exponential time-decay rates l according to the continuous model

Eigenmode PNR2L2 PNR0L4 PNR2L4 PNC0R2 PNF2

I �0.034 �0.078 �0.084 �1.73 �0.078

II �0.034 �0.078 �0.34 �6.93 �0.078

III �0.059 �0.078 �0.76 �15.59 �0.078

IV �0.096 �0.078 �1.35 �27.71 �0.10

V �0.14 �0.078 �2.11 �43.30 �0.15

ETDR �0.034 �0.078 �0.084 �1.73 �0.078

Electrical parameters chosen as in Table 5.
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The discrete model supplies values for the electric components (Table 7) and the modal
exponential time-decay rates (Table 8) which are different from the corresponding quantities
obtained by using the continuous model, given in Section 8.3.3.
It is pointed out that the discrete-model equations (60) may be taken formally to coincide with

the continuous-model equations (38), if the homogenized structural piezoelectric coupling
coefficient K is replaced by f ðajZe=2ÞK , and the second- and fourth-order admittances A2ðsÞ and
A4ðsÞ are, respectively, replaced by gðajeÞA2ðsÞ and hðajeÞA4ðsÞ. The coefficients f ðajZe=2Þ, gðajeÞ
and hðajeÞ, reported in Table 9, do depend on the mode number j: as a consequence, the optimal-
tuning conditions (44) for the continuous model do not hold when the discrete model is adopted.
Table 7

Dimensionless electric parameters of periodic networks: optimization on the first five eigenmodes according to the

discrete model

PNR2L2 PNR0L4 PNR2L4 PNC0R2 PNF2

R 1.96 4.73 2.92 53.79 2.54, 7.82

L 3.35 0.80 0.96 / 2.74, 1.79

C / / / 0.997 0.972

In the last column the first (respectively, second) entries refer to R1, L1 (respectively, R2, L2).

Table 8

Dimensionless modal exponential time-decay rates l according to the discrete model

Eigenmode PNR2L2 PNR0L4 PNR2L4 PNC0R2 PNF2

I �0.031 �0.018 �0.084 �1.73 �0.072

II �0.031 �0.15 �0.15 �4.09 �0.073

III �0.046 �0.11 �0.15 �7.41 �0.072

IV �0.059 �0.040 �0.12 �10.78 �0.073

V �0.064 �0.018 �0.084 �13.74 �0.072

ETDR �0.031 �0.018 �0.084 �1.73 �0.072

Electrical parameters chosen as in Table 7.

Table 9

Coefficients f ðajZe=2Þ, gðajeÞ and hðajeÞ, for the eigenmodes j ¼ 1 . . . 5

Eigenmode f ðajZe=2Þ gðajeÞ hðajeÞ

I 0.9927 0.9774 0.9552

II 0.9711 0.9119 0.8315

III 0.9356 0.8106 0.6570

IV 0.8873 0.6839 0.4677

V 0.8273 0.5445 0.2965
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However, these conditions turn out to be an excellent design tool: indeed, the electric networks
PNR2L4 and PNC0R2, designed according to Eq. (44), exhibit in Table 8 almost the same
exponential time-decay rates shown in Table 6, at the cost of consuming the great amount of
damping on higher-frequency modes predicted by the continuous model.
On the other hand, the networks PNR0L4 and PNR2L2, which do not satisfy the optimal-

tuning conditions, exhibit in Table 8 smaller exponential time-decay rates than the ones in
Table 6. The decrease in performances is more significant for PNR0L4 than for PNR2L2.
As a matter of fact, both of them are mistuned on higher frequencies: the latter because the
optimal value of the inductance is proportional to j2 (see Table 2); the former due to
the coefficient hðajeÞ which appear in the discrete model: indeed, even a little mistuning severely
worsen the performance [4]. Hence, the modal exponential time-decay rates on higher fre-
quencies for both these networks depend only on the value of the resistance, which is not
far from the correct one (up to gðajeÞ, being of the order of one) for PNR2L2, and is completely
incorrect for PNR0L4 because the optimal value of the resistance is proportional to j2

(see Table 2).
Finally, the network PNF2 exhibits a remarkable exponential time-decay rate even when the

discrete model is adopted (Table 8). It is emphasized that such a performance is obtained by using
only standard passive components. The two parallel branches behave like electric filters, enabling
a proper damping on low- and high-frequency eigenmodes, respectively. Hence, the network
PNF2 is a very good compromise between simplicity in implementation and effectiveness in
multimodal damping.
As a concluding remark, it can be observed that the difference between the results supplied by

the continuous model (Tables 5 and 6) and the ones supplied by the discrete model (Tables 7 and
8) is not negligible. Hence, though the former is suitable for preliminary design purposes, the use
of the latter is mandatory for final implementations.
The present comparison was performed in the case of a simply-supported beam, which allowed

closed-form computations according to both the continuous and the discrete model. However, the
numerical computations in Ref. [18] showed that the same order of merit of the considered
networks prevails for different boundary conditions.

8.4. Nonperiodic networks

Beam vibration control by means of nonperiodic networks is here investigated.
The simplest nonperiodic network considered is the network NPNR0L0, shown in Fig. 12. It is

composed by standard RL-parallel shunt circuits, each one connected to a piezoelectric actuator.
The network NPNR2L2, shown in Fig. 13, is obtained by connecting each piezoelectric actuator

to the adjacent ones by means of a RL-parallel shunt circuit.
In order to evaluate the performances of those nonperiodic networks, a numerical optimization

is performed on the basis of the discrete model reported in Section 3. The shape functions f jðzÞ

appearing in Eq. (9) are chosen as in Eq. (47).
It is emphasized that Eqs. (12) and (13) cannot be decoupled into independent equations for

each eigenmode, due to the nonperiodic character of the networks. Moreover, the number of
parameters to be optimized in the present case is in general higher than in the case of periodic
networks, leading to a difficult numerical optimization problem.
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Fig. 13. Nonperiodic electric network NPNR2L2.

Table 10

Dimensionless optimal electric parameters for the nonperiodic networks NPNR0L0 and NPNR2L2

NPNR0L0 NPNR2L2

R1 ¼ 9:35 L1 ¼ 0:822 R0;1 ¼ 4:27 L0;1 ¼ 5:16

R2 ¼ 15:17 L2 ¼ 12:50 R1;2 ¼ 0:509 L1;2 ¼ 0:984

R3 ¼ 15:66 L3 ¼ 13:69 R2;3 ¼ 30:70 L2;3 ¼ 0:584

R4 ¼ 0:434 L4 ¼ 0:0355 R3;4 ¼ 1:67 L3;4 ¼ 0:470

R5 ¼ 0:779 L5 ¼ 0:151 R4;5 ¼ 1:11 L4;5 ¼ 7:43

R5;6 ¼ 86:67 L5;6 ¼ 4:26

Li-2

Ri-2

Li-1

Ri-1

Li

Ri

Li+1

Ri+1

Li+2

Ri+2

Fig. 12. Nonperiodic electric network NPNR0L0.
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The optimal electric parameters are reported in Table 10. In order to evaluate the exponen-
tial time-decay rate, all the complex poles of system (12) and (13) are evaluated and reported in
Table 11 in dimensionless form: the real part of the poles correspond to the dimensionless modal
exponential time-decay rate l, whereas the imaginary part o is the corresponding dimensionless
circular frequency. It can be observed that both the networks NPNR0L0 and NPNR2L2 are able
to furnish an effective multimodal damping, which is close to the damping supplied by the
PNR2L4 network. However, the nonperiodic networks require to tune many electric parameters at
different tuning values.
9. Conclusion

The optimal design of electric networks for vibration damping of a piezoactuated beam was
studied. Both a continuous-homogenized model and a discrete model were proposed for the
dynamical analysis of the controlled structure. The former supplied a simple analytical condition
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Table 11

Dimensionless pole couples relevant to the nonperiodic networks NPNR0L0 and NPNR2L2

Pole couples NPNR0L0 NPNR2L2

I �0.078 � 0.99 I �0.087 � 1.00 I

II �0.078 � 1.00 I �0.087 � 1.00 I

III �0.078 � 1.00 I �0.77 � 3.66 I

IV �0.10 � 3.87 I �0.13 � 4.08 I

V �0.091 � 4.13 I �2.14 � 7.70 I

VI �0.078 � 9.07 I �0.089 � 9.14 I

VII �2.24 � 9.08 I �0.091 � 16.13 I

VIII �0.078 � 16.11 I �0.087 � 25.23 I

IX �4.08 � 18.90 I �1.41, �3.09 þ 0 I

X �0.078 � 25.27 I �3.51, �11.44 þ 0 I

ETDR �0.078 �0.087
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for the optimal design of periodic networks. The latter turned out to be a necessary tool for
evaluating the performances of designed networks in practical applications. The new proposed
networks exhibited good performances in multimodal damping and improved over existing ones.
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Appendix A. Discrete model for the simply-supported beam: change of variable

This appendix is aimed to derive Eqs. (55)–(58), yielding the transformed matrices ~Kme, ~M0, ~M2

and ~M4 obtained from Eq. (53) after the change of variable (51).

A.1. Preliminaries

The following well-known identities will be instrumental in the computations:

XN

j¼0

cos jz ¼

N þ 1 if z � 0mod2p

cos
Nz

2

sin½ððN þ 1ÞzÞ=2�

sinðz=2Þ
otherwise

8<
: (A.1)
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and

XN

j¼0

sin jz ¼

0 if z � 0mod2p

sin
Nz

2

sin½ððN þ 1ÞzÞ=2�

sinðz=2Þ
otherwise;

8<
: (A.2)

where N 2 N, z 2 R and � means congruent. The proof of Eqs. (A.1) and (A.2) is easily obtained
by noting that their left-hand sides are, respectively, the real part and the coefficient of the
imaginary part of the geometric series

PN
j¼0u

j, where u ¼ expðIzÞ.
The above identities are then specialized to the case when N ¼ pþ 1 and z ¼ mp=ðpþ 1Þ, with

m 2 Z, leading to the identities:

Xpþ1
j¼0

cos
jmp

pþ 1
¼

pþ 2 if m � 0mod2ðpþ 1Þ;

1 if m is even; and mc0mod2ðpþ 1Þ;

0 if m is odd

8><
>: (A.3)

and

Xpþ1
j¼0

sin
jmp

pþ 1
¼

0 if m is even;

cot
mp

2ðpþ 1Þ
if m is odd:

8<
: (A.4)

If the sum at the left-hand side of Eq. (A.4) is carried out for j from 1 to p, the result is unchanged;
on the other hand, Eq. (A.3) is transformed into:

Xp

j¼1

cos
jmp

pþ 1
¼

p if m � 0mod2ðpþ 1Þ;

�1 if m is even; and mc0mod2ðpþ 1Þ;

0 if m is odd:

8><
>: (A.5)
A.2. The transformed matrix ~Kme

In this section, Eq. (55) is proved. It turns out that

ð ~KmeÞji ¼
Xp

q¼1

ðKmeÞjqHqi ¼ �
hbe31aj

l
ffiffiffi
r
p sin

ajeZ
2


 �Xp

q¼1

2 sinðajeqÞ sinðaieqÞ. (A.6)

By using Eq. (A.5) and remembering that 1pjpn and 1pipp, it follows that

Xp

q¼1

2 sinðajeqÞ sinðaieqÞ ¼
Xp

q¼1

cos
qðj � iÞp

pþ 1
�
Xp

q¼1

cos
qðj þ iÞp

pþ 1
¼ ðpþ 1Þdji. (A.7)

Indeed, if jai, the quantities j � i and j þ i have the same evenness, and are not congruent to zero
modulo 2ðpþ 1Þ, as a consequence of condition (54), so that the sums on the second term of the
previous equation are equal; if j ¼ i, reasoning as above, one finds that the first sum is equal to p,
whereas the second one is equal to �1. Eq. (55) readily follows from Eqs. (A.6) and (A.7).
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A.3. The transformed matrix ~M0

In this section, Eq. (56) is proved. Let wðjÞ be the jth column of the matrix H:

w
ðjÞ
i ¼ Hij ¼

ffiffiffi
2

l

r
sinðajeiÞ. (A.8)

Reasoning as in Section A.2, it turns out that

ð ~M0Þij ¼ wðiÞ � wðjÞ ¼
Xp

q¼1

wðiÞq wðjÞq ¼
1

l

Xp

q¼1

2 sinðaieqÞ sinðajeqÞ

¼
pþ 1

l
dij ¼

1

e
dij. ðA:9Þ

Hence, in particular, the vectors wðjÞ, j ¼ 1 . . . p, constitute an orthogonal basis of Rp.
A.4. The transformed matrix ~M2

In this section, Eq. (57) is proved. According to Eq. (A.9), it is sufficient to prove that wðjÞ is an
eigenvector of the matrix M2, and the corresponding eigenvalue is ðajeÞ

2gðajeÞ. Indeed, setting
zðjÞ ¼M2w

ðjÞ, it turns out that

z
ðjÞ
i ¼ � w

ðjÞ
i�1 þ 2w

ðjÞ
i � w

ðjÞ
iþ1

¼

ffiffiffi
2

l

r
½� sinði � 1Þajeþ 2 sin iaje� sinði þ 1Þaje� ¼ 2ð1� cos ajeÞ

ffiffiffi
2

l

r
sin iaje

¼ 2ð1� cos ajeÞ w
ðjÞ
i ¼ ðajeÞ

2gðajeÞ w
ðjÞ
i . ðA:10Þ

The previous equation holds for 2pipp� 1, but the same computation applies to the cases i ¼ 1
and i ¼ p, by setting w

ðjÞ
0 ¼ w

ðjÞ
pþ1 ¼ 0, in agreement with Eq. (A.8).
A.5. The transformed matrix ~M4

In this section Eq. (58) is proved. As in the previous case, it is sufficient to prove that wðjÞ is an
eigenvector of the matrix M4, and the corresponding eigenvalue is ðaieÞ

4hðaieÞ. Indeed, setting
zðjÞ ¼M4w

ðjÞ, it turns out that

z
ðjÞ
i ¼ w

ðjÞ
i�2 � 4w

ðjÞ
i�1 þ 6w

ðjÞ
i � 4w

ðjÞ
iþ1 þ w

ðjÞ
iþ2

¼

ffiffiffi
2

l

r
½sinði � 2Þaje� 4 sinði � 1Þajeþ 6 sin iaje� 4 sinði þ 1Þajeþ sinði þ 2Þaje�

¼ 2ð3� 4 cos ajeþ cos 2ajeÞ

ffiffiffi
2

l

r
sin iaje

¼ 2ð3� 4 cos ajeþ cos 2ajeÞ w
ðjÞ
i ¼ ðajeÞ

4hðajeÞ w
ðjÞ
i . ðA:11Þ



ARTICLE IN PRESS

P. Bisegna et al. / Journal of Sound and Vibration 289 (2006) 908–937936
The previous equation holds for 3pipp� 2, but the same computation applies to the cases
i ¼ 1; 2 and i ¼ p� 1; p, by setting w

ðjÞ
0 ¼ w

ðjÞ
pþ1 ¼ 0, w

ðjÞ
�1 ¼ �w

ðjÞ
1 and w

ðjÞ
pþ2 ¼ �wðjÞp , in agreement

with Eq. (A.8).
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